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Abstract
An attempt is made to develop an equilibrium kinetic equation for a weakly non-
ideal non-uniform plasma utilizing the Bogoliubov–Born–Green–Kirkwood–
Yvon hierarchy of equations. The time-independent pair correlation function is
shown to be a product of two single-particle non-uniform distribution functions
and the binary interaction potential that is taken to be Coulombian. In order to
obtain a closed form of kinetic equation, it is necessary to express the first-order
corrections to the Vlasov equation arising out of correlations in terms of average
plasma potential. The singular nature of the Coulomb potential gives rise to
certain divergences that can be removed by the choice of Landau and Debye
lengths as the lower and upper limits of the impact parameter. This procedure
enables a representation of pairwise interaction potential in terms of average
macroscopic potential. The first-order kinetic equation is utilized to obtain a
modified Boltzmann distribution that includes the effects of correlations.

PACS numbers: 52.25.Dg, 51.10, +y, 95.30.Qd, 96.25.St

The thermodynamic properties of a plasma can be characterized by defining the coupling
parameter � which is the ratio of the mean Coulomb potential energy to the mean thermal
energy:

� = e2

akBT

where a = n−1/3 is the order of the average interparticle distance.
Depending on the value of the coupling parameter, three different regimes can be

distinguished where the nature of interactions are different. (a) � � 1: here, the Debye
screening length is much greater than the average interparticle distance and the plasma particles
are assumed to be uncorrelated. The plasma behaviour resembling that of an ideal gas can
be studied using the Vlasov equation or the associated fluid models. (b) � ≈ 0.1: the mean
Coulomb energy is not much smaller than the average thermal energy so that correlations
between the plasma particles are non-negligible. It is not possible to separate individual
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and collective degrees of freedom. The plasma is defined as a weakly non-ideal plasma.
The theoretical description of such a system falls within the framework of kinetic theory
using a perturbation expansion about the plasma parameter g = 1/nλ3

D = �3/2, where
λ2

D = ε0KBT/ne2 (c) � > 1. In this regime, characterized by a high density or low
temperature, the plasma is called a non-ideal plasma. Here particle–particle correlations are
important. Such plasmas are difficult to treat theoretically because standard approximations
and expansion methods break down.

In the solar core and other astrophysical systems such as brown dwarfs, Jupiter core
and stellar atmospheres, � ≈ 0.1. Such systems can be considered as weakly non-ideal
plasma systems. The advent of femtosecond laser pulses also stimulates the interest of weakly
coupled plasmas. The properties of such plasmas cannot be described by the model of an
ideal plasma system. From the theoretical point of view, a weakly coupled plasma can be
regarded as a test bed for the study of the onset of non-ideality effects [1]. Studies on weakly
non-ideal plasmas help in the understanding of how stationary equilibrium is reached within a
plasma.

The Vlasov equation is obtained in the mean field limit where each particle interacts
with an average field produced by all the other plasma particles, with the particle discreteness
effects completely neglected. The collisional dynamics of a homogeneous system with weak
long-range interaction is described by the Landau equation [2] that can be derived from the
Boltzmann or Fokker–Planck equations. The time evolution of a spatially uniform plasma
including the physics of collisions between two shielded particles is described by the Balescu–
Lenard [3] equation under the assumption that three-particle correlations are negligible. A
general kinetic equation including a Fokker–Planck collisional integral enabling the study of
the role of collisions on collective processes was proposed by Lenard and Bernstein [4] under
the conditions that the equation preserves conservation of number of particles and yields an
equilibrium that is Maxwellian. The Lenard–Bernstein collisional operator was also used
by Zakharov and Karpmann [5] to study the collisional damping of nonlinear plasma waves.
Analytical [6] and experimental works [7], as well as numerical simulations [8], have studied
the slow decay of nonlinear trapping oscillations [9] due to the effects of weak collisional
dissipation and also the regime of strong collisionality where no nonlinear plasma waves can
be produced. The importance of two-particle correlations in the evolution of a system towards
equilibrium is studied through particle-in-cell simulations on nonlinear Landau damping and
the results compared with those of toy model simulations [10].

Another method to study the role of collisions on plasma phenomena is through the
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy description which at the first
order in the plasma parameter g retains the effects of pair interactions. For long wavelength
electrostatic plasma oscillations, the correlational damping decrement obtained from the
linearized BBGKY hierarchy equations was found [11] to greatly exceed the Landau damping
decrement. Both the Landau and Balescu–Lenard equations are first-order equations in the
parameter g and are known to have a large domain of validity [12] with applicability to
a large class of potentials of interaction in various of dimensions of space as well as for
multicomponent systems. The equations are extensively used to describe the influence of
pair interactions on the time evolution of the plasma and its dissipative characteristics. It
would be interesting to examine the effects of pair correlations on the equilibrium properties
of the plasma such as nonlinear stationary solutions of Vlasov–Poisson’s equation. In one
dimension, a stationary solution of the electrostatic Vlasov equation can be constructed as
a function of the energy of a single particle. Such solutions are of fundamental importance
to plasma physics because together with Poisson’s equation, they self-consistently describe a
class of nonlinear structures known as Bernstein–Greene–Kruskal (BGK) modes [13].
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For an inhomogeneous unmagnetized plasma, in the presence of a purely electrostatic
interaction, the density distribution determines the nature of the potential distribution through
Poisson’s equation. The density profile is obtained through a velocity space integration of
the single-particle distribution function that is a solution of the collisionless Vlasov equation.
In the case of a more general equilibrium kinetic equation such as the BBGKY hierarchy
equation at first order, the nature of the single-particle distribution as well as the density
profile should be influenced by the nature of the binary interaction between particles. A
straightforward way to understand this influence would be to develop an equilibrium kinetic
equation for a pair correlated non-uniform plasma by considering the first two equations of
the BBGKY hierarchy. The BBGKY hierarchy at the first order contains the two-particle
distribution function that can be expressed in terms of the pair correlation function utilizing
the Mayer cluster expansion. The equilibrium second hierarchy equation with the three-
particle correlation terms neglected is solved for the spatial dependence of the pair correlation
function. For a plasma in equilibrium, the pair correlation function is shown to be a product of
two single-particle non-uniform distribution functions and the interaction potential between
two particles that is taken to be Coulombian. The pair correlation function is utilized in
the first-order equilibrium kinetic equation for electrons and ions to obtain their respective
distribution functions in terms of the electrostatic potential in the presence of electron–electron,
electron–ion and ion–ion correlation effects.

The 1/r nature of the Coulomb interaction between charged particles gives rise to different
diverging integrals in the context of the study of correlation effects. The long-range nature
of the Coulomb potential gives rise to one kind of divergence, avoided by cutting the impact
parameter at λD at the upper limit. Such a cutoff matches perfectly with the characteristics
of the plasma as the Coulomb potential is modified by the screened Debye potential with its
effective range limited up to the Debye length.

At short distances the unbound nature of the potential invalidates the expansion technique
of the distribution function with g = 1/nλ3

D as the expansion parameter. Different techniques
have been employed to lift this difficulty. For a charged particle system, Bogoliubov [14]
suggested a modified Coulomb potential of the following form:

φ = e2

r
[1 − exp(−λr)],

that effectively lifts the divergence at small distances. Another procedure [15] comes with
the cutting off of the k-space integral for large k which avoids close encounters between the
particles. In the non-relativistic quantum mechanical approach [16] the de Broglie wavelength
of the charged particles is taken as the finite dimension of the particle. So the Coulomb
potential is restricted down to de Broglie wavelength at the lower limit and that eventually puts
away the divergence. The problem of divergences has also been tackled by defining various
forms of convergent collision integrals [17].

The aim of this paper is to construct the equilibrium density distribution function of
plasma particles in the presence of weak correlations in a non-uniform plasma by lifting the
divergences in a physically meaningful way.

1. Pair correlation function in an equilibrium non-uniform plasma

For a spatially non-uniform plasma, the equilibrium pair correlation function can be obtained
by considering the first two members of the BBGKY hierarchy of equations and neglecting
three-particle correlations. Utilizing the Mayer cluster expansion for the two-particle
distribution function
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f2(X1, X2) = f1(X1)f1(X2) + g12(X1, X2),

one of the time-independent solutions of the first two members of the BBGKY hierarchy set
of equations can be obtained [18] as

g12(X1, X2) = f1(X1)f1(X2)χ12(x1, x2), (1)

where the single-particle distribution functions f1(X1) and f1(X2) are functions of both
position and velocity and χ12 describes the positional correlation between particles. Due to
the central nature of the Coulomb force, we can write

χ12(x1, x2) = χ12(|x1 − x2|). (2)

For a non-uniform plasma in thermal equilibrium, the single-particle distribution function is
considered to be of the form

f1(X1) = fM(v1)F1(x1), (3)

where fM is a Maxwellian distribution and F1 denotes the spatially dependent part of the single-
particle distribution function. The spatial dependence of the distribution function works out to
be the Boltzmann distribution for an equilibrium plasma supporting an electrostatic potential
when there are no velocity correlations between particles. Under the approximation r � λD ,
with r = |x1 − x2| denoting the interparticle distance, the following form [18] is obtained for
χ12:

χ12(X1, X2) = −1 + exp

(
− φ12

kBT

)
. (4)

While obtaining the above expression it is assumed that if particles 1 and 2 belong to
different species, they have attained a common temperature T. This form of pair correlation
function satisfies the physical conditions [19] that it tends to zero at very large distances. For
φ12/kBT � 1, the expression for χ12 can be approximated by

χ12(X1, X2) = − φ12

kBT
. (5)

The average interaction potential between two particles separated by a distance |x1 − x2| can
be approximated by the Coulomb potential [20]:

φ12(x1 − x2) = q2

4πε0|x1 − x2| , (6)

to obtain the following pair correlation function:

g12(X1, X2) = q2

4πε0kBT |x1 − x2|f1(X1)f1(X2). (7)

The form of the pair correlation function given in equation (7) exhibits a singularity [21]
at r = 0 which arises due to the singular nature of the Coulomb force. However, it is to be
noted that this form of g12 is obtained under the approximation φ12/kBT � 1 that restricts r
to values greater than r2

av

/
λ2

D , where rav is the mean interparticle distance.
We note that the expression in equation (7) describes a time-independent solution for

the pair correlation function that differs from well-known [15] equilibrium pair correlation
functions as it supports non-uniform single-particle distribution functions. A knowledge of
the two-particle correlation function is essential for calculating the thermodynamic properties
of a plasma in equilibrium [22].
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2. Equilibrium kinetic equation for a weakly non-ideal plasma

The kinetic equation in the presence of correlations can be written by making use of
equation (7) for the equilibrium two-particle correlation function in the first-order kinetic
equation given below:

v1 · ∂f1

∂x1
− n0

m

∫
dX2f1(X2)∇x1φ12 · ∂f1(X1)

∂v1
= n0

m

∫
dX2∇x1φ12 · ∂g12

∂v1

= − n0

mkBT

∫
dx2∇x1φ

2
12 · ∂f1(X1)

∂v1
n(x2), (8)

where n(x2) = n0
∫

dv2f1(x2, v2) is the density distribution function and n0 is the average
equilibrium density. The third term of equation (8) gives the contribution to the kinetic
equation due to pair correlations. While the average of φ12 is represented by a macroscopic
potential qφ = ∫

dX2f (X2)φ12, it is necessary to find a representation for the average of φ2
12:

φ2
12 = 1

16π2ε2
0

q4

|x1 − x2|2 . (9)

We want to calculate the k-space representation of φ2
12:

ψ(k) = q4

(4πε0)2

1

2π3

∫
1

s2
exp(ik · s) d3s = 1

128π5ε2
0

4π

k

∫ λ

R

sin ks

s
ds, (10)

where s = |x1 − x2|. The upper and lower limits in the integral appearing in equation (10) are
taken to be λ and R instead of ∞ and 0. We can express ψ(k) in terms of the exponential sine
integral [23] as follows:

ψ(k) = 1

32π4ε4
0k

[si(kλ) − si(kR)]. (11)

The upper limit λ is taken to be λD , since in a neutral plasma, polarization effects cause
the potential to be screened on a distance corresponding to the Debye length. The lower
limit cannot be taken to be zero because this will lead to a breakdown of the assumption
that the expansion parameter g of BBGKY hierarchy should be small. Because of the strong
interparticle interaction (large angle collisions) at close distances, it is not correct to assume
|g| � |f1(1)f1(2)|. The smallness of g can be maintained only if the particles participating in
the interaction be prevented to approach very close to each other. The short-range divergence
that occurs in the context of the collision integrals of the Balescu–Lenard equation is resolved
by simply cutting off the integral at some lower limit spatial scale. Since the divergence that
occurs in such integrals is logarithmic and since it is such a slowly varying function of its
argument, the ‘classical distance of closest approach’ or the Landau length (q2/kBT ) would
be a reasonable choice. In our particular problem, instead of logarithmic, the dependences of
cutoffs are coming through sine integral function which is an even slower varying function
than the logarithmic. Therefore, the concept of cutoff is also applicable in the present case and
an appropriate value for the lower limit is taken to be the Landau length. Therefore, restricting
the lower limit to R = q2/kBT excludes the large-angle collisions in a plasma which is also
consistent with the plasma approximation since the ratio of the cross sections for a single large-
angle and multiple small-angle collisions falls off as 1/8ln(
) where 
 = 24πnλ3

D . For a
weakly non-ideal plasma with the g factor taken to be 0.1, the cross section for multiple small-
angle collisions is about 50 times the cross section for a single large-angle collision showing
that it is justified to neglect the latter while estimating the Fourier transform of the Coulomb
potential. Such arguments also find relevance in the removal of logarithmic divergences
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that appear in the diffusion coefficients obtained from Fokker–Planck and Balescu–Lenard
equations at small and large impact parameters for a Coulombian two-particle interaction.

We use the series expansion of the exponential sine integral to obtain ψ(k) as the following:

=
∞∑

n=0

(−1)n[λ2n+1 − R2n+1]

(2n + 1)(2n + 1)!
k2n. (12)

The correlation term on the right-hand side of equation (8) works out as follows after
considering the Coulomb potential for φ12:

v1 · ∂f1

∂x1
− n0

m

∫
dX2f1(X2)∇x1φ12 · ∂f1(X1)

∂v1

= − ω2
p

32π4n2
0λ

2
D

∫
dx2∇x1

(
1

|x1 − x2|2
)

· ∂f1(X1)

∂v1
n(x2). (13)

Inserting the k-space representation of 1/|x1 − x2|2
1

|x1 − x2|2 =
∫

dk
(si(kλ) − si(kR))

k
e−ik·(x1−x2), (14)

the first-order kinetic equation works out to be the following after the Fourier integrals are
carried out:

v1 · ∂f1

∂x1
− n0

m

∫
dX2f1(X2)∇x1φ12 · ∂f1(X1)

∂v1

= − ω2
p

4πn2
0λ

2
D

∇x1

∫
dk

[ ∞∑
n=0

(−1)n
[
λ2n+1

D − R2n+1
]

(2n + 1)(2n + 1)!
k2n

]
n(k) eik·x1 · ∂f1(X1)

∂v1
. (15)

Equation (16) gives a general representation of the term involving pair correlations
as a series expansion involving the plasma density. It should be noted that the terms in
equation (16) vanish for a homogeneous plasma. The first-order kinetic equation
(normalized) for electrons(ions) considering both electron–electron(ion–ion) and electron–
ion(ion–electron) correlations and retaining all the terms of the exponential sine integral
expansion is given by the following:

v1 · ∂f1(X1)

∂x1
− q

|q|
∂φ(x1)

∂x1
· ∂f1(X1)

∂v1

= −A∇x1

[ ∞∑
n=0

[1 − (R/λD)2n+1]

(2n + 1)(2n + 1)!
∇2n(ni + ne)

]
· ∂f1(X1)

∂v1
, (16)

where A = 1/3ND and the variables x, n, v and φ are normalized by λD, n0, vth and kBT /|q|
respectively, where λD, n0, T and vth are the Debye length, density, temperature and thermal
velocity of the species. The parameter ND denotes the number of particles in the Debye sphere.
In normalized variables, identical equations are obtained for both electron and ions.

The above equation is utilized to obtain the equilibrium density distribution for electrons
and ions in the presence of weak non-ideal effects. From the single-particle equation of motion

m
dv
dt

= − ∂

∂x

[
− q

|q|φ + A

( ∞∑
n=0

[1 − (R/λD)2n+1]

(2n + 1)(2n + 1)!
∇2n(ni + ne)

)]
(17)

we construct the constant of motion that is utilized to obtain the following equilibrium
distribution functions for electrons and ions:

ne = exp

(
φ(r) +

1

3ND

[ ∞∑
n=0

[1 − (1/ND)2n+1]

(2n + 1)(2n + 1)!
∇2n(ni + ne)

])
, (18)
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Figure 1. Normalized electron density ne plotted against φ for � = 0, 0.1, 0.2.

ni = exp

(
−φ(r) +

1

3ND

[ ∞∑
n=0

[1 − (1/ND)2n+1]

(2n + 1)(2n + 1)!
∇2n(ni + ne)

])
. (19)

The role of weak non-ideal effects is displayed [24] through a modification of the
equilibrium distribution function. In the limit 1/ND → 0, the usual Boltzmann distribution is
recovered.

3. Results and conclusions

In figure 1, we have plotted the electron density versus normalized potential for three different
values of � = 0, 0.1 and 0.2. It may be noted that g = 1/ND = �3/2 so that the chosen
values of � are within the limits imposed by the pertubation technique employed to obtain
the density distribution. The curve corresponding to � = 0.0 refers to the usual Boltzmann
distribution for an ideal plasma. The density profiles for � = 0.1 and 0.2 corresponding to a
weakly non-ideal plasma show the influence of correlations on the density distribution.

The influence of discrete particle effects on the macroscopic phenomena in a plasma is
studied by developing an equilibrium kinetic equation that contains first-order corrections in
the plasma parameter. For a non-uniform plasma in thermal equilibrium, the Vlasov equation
describes the density distribution in terms of the average electrostatic potential without any
reference to the nature of the two-particle interaction in the plasma. This is because in the
limit g → 0 the BBGKY hierarchy equation takes care of collective effects only.

The first-order kinetic equation explicitly includes the binary interaction effects that are
considered to be Coulombian in this work. In a manner similar to that utilized to develop the
Vlasov equation, an attempt is made to express the first-order terms in terms of an average
plasma potential. Interestingly, the nature of the two-particle interaction is also revealed
through the first-order equation in the way the correlation term depends on the macroscopic
potential or density. The entire scheme is facilitated by the observation of certain divergences
that arise due to the nature of the Coulomb potential. A lower limit to the interparticle distance
other than zero becomes relevant, in the absence of which the Mayer series expansion based on
the smallness of g that leads to the truncation of BBGKY hierarchy loses its appropriateness.
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Inclusion of the lower limit of impact parameter brings a significant alteration in the Fourier
transform of the Coulomb potential. The last term in the Vlasov equation that has its root in the
collective nature of the plasma system, does not carry the signature of the singular character
of the Coulomb potential. The encounters at short distances give rise to large deviation
collisions, and in a weakly coupled plasma their contribution is negligible with respect to the
cumulative effects of the small angle collisions. Therefore, the lower limit of the interparticle
distance is taken to be the Landau length (e2/kBT ) that marks the boundary between large-
and small-angle collisions. The upper limit to which interaction between particles can extend
is the Debye length in view of the screening effects in a plasma. The choice of finite upper
and lower limits enables a representation of the pair correlation terms in the kinetic equation
through suitable operators acting on macroscopic variables. It is interesting to observe that
the quantity arising on account of finite pair correlations depends on the exact form of binary
interaction between particles. In the case of dusty plasmas, the interaction between two dust
particles is known to be of the Debye–Huckel type [25]. However, for such and any other
general form of binary interaction, it is not possible to find an operator that will make it
possible to express the microscopic interaction term in terms of macroscopic variables. The
nature of the Coulomb interaction between particles seems to afford a unique advantage in
this respect.

It is important to understand the parameter region in the plasma where such weakly non-
ideal effects will be important. For plasmas of very low density, the study of plasma phenomena
in terms of only collective effects is justified. This situation leads to the small values of the
order parameter so that the BBGKY hierarchy reduces to the Vlasov equation. For higher
plasma densities, single-particle effects predominate and the Mayer cluster expansion loses its
appropriateness in truncating the BBGKY hierarchy. Such plasmas are in the strongly coupled
regime and their dynamics can be studied by several methods [26–28]. In the intermediate
density region, single-particle effects described by binary interactions influence collective
phenomena and for small but finite values of g = 1/ND , such effects can be studied within
the framework of the BBGKY hierarchy. The influence of weak non-ideal effects is to modify
the equilibrium density distribution. Poisson’s equation together with the modified density
distribution will give rise to potential structures that depend on the correlation parameter.
These solutions of the new equilibrium kinetic equation obtained by taking binary correlations
into account correspond to the potential structures that are stationary nonlinear solutions
of Vlasov–Poisson’s equation. While correlations are known to be responsible to drive a
system to equilibrium, under stationary conditions they act to modify the equilibrium density
distribution.
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